
Final Last Updated June 5, 2014

Andrew Ng Coursera ML Course Reading Notes

Ilya Nepomnyashchiy

Due to the volume of notes and my desire to get on to other reading projects, I won’t be finishing my transcription
of my notes for this class. If you wish to learn the materials from the class, please do check it out on Coursera. It
is run quite regularly.

These are notes taken for myself. I have a much higher degree of Math, CS, and ML background than I think is
assumed for the course, so I will abbreviate a lot of concepts that are described in much better detail in the lecture
for lower level students. I hope that my notes come in handy to someone else, though. As always, I’d be happy to
clarify, debate, or correct any observations that I make here if you e-mail me from my website.

I took this course at the end of 2013 and just took forever to actually write up the notes.

Also, due to the Coursera Honor Code, I am barred from making any of my work for the course available publicly.
Thus, I will only be posting my notes.

Contents

Lecture 1: What is ML? 1

Lecture 2: Linear regression of one variable 2

Lecture 3: Linear algebra review 3

Lecture 4: Learning with multiple features 4

Lecture 1: What is ML?

Machine Learning is pervasive in the world: Search engines, photo tagging (e.g. Facebook or Flickr), and spam
filters are everyday examples of our use of Machine Learning. We hope to eventually have AI that is as smart as
humans, and many hope that learning algorithms will pave the way for this future.

One of the goals of this course is to provide the student with practical knowledge and understanding in addition to
the mathematics and theory, because without practical knowledge and implementation details, the theory is pretty
much useless. (The practical knowledge is pretty much why I am taking this course, even though I know a lot of
the theory already).

In addition to the above problems, ML can be useful for:

• Database mining, where we need to deal with large and unwieldy datasets in many different domains.

1



Ilya Nepomnyashchiy - Reading Notes - Coursera ML 2

• Applications that cannot be done by hand, such as autonomous helicopters and handwriting recognition (I
see these as domains where we are limited by the fact that in traditional programming, computers will only
do exactly what we tell them to do).

• Self-customizing programs, such as product recommendations

• Understanding human learning

How can we define Machine Learning? Arthur Samuel (1959): Algorithms which give computers the “ability to
learn without being explicitly programmed”. Samuel wrote a good checkers AI without being able to play checkers
well himself. He was able to do this because the computer could take the time to analyze many, many games. Tom
Mitchell (1998): “A computer is said to learn from experience E with respect to some task T and some performance
measure P, if its performance on T, as measured by P, improves with experience E.” (I myself think this is a fine
definition, but may be over-formalizing it a bit).

There are two main categories of Machine Learning systems and lots of other broad categories we will be covering:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

• Recommender systems

• Other stuff!

The first two are most common. At this point, Professor Ng once again mentions that we will be learning lots of
practical knowledge, and that he has met with people working in industry who have spent months on a problem
but getting nowhere due to lacking some key practical insight.

The way supervised learning works is that we are given a set of points and the “correct answer” for those points.
As an example, consider a situation in which you have the housing prices at sale for a number of houses in your
area compared to their square footage and you wish to predict the sale price of a new house. How would you do
it? You could fit a line, fit a quadractic function, fit an arbitrary polynomial, etc. We will discuss in future lectures
how to choose which function. Such a problem is also called a “regression” problem because we are predicting a
continuous-valued output.

Another example of supervised learning is prediction of whether or not a tumor is breast cancer based on the
tumor size. Since this is a problem that requires prediction of a discrete-valued output, it is called a “classification”
problem. We can think about this problem as separating values on R

1. If we had another feature, it’d be easier to
separate the points. In reality, we could have many different features. We will discuss an algorithm that can deal
with arbitrary numbers of features.

In unsupervised learning, we merely give the algorithm a bunch of data and no labels and ask it to categories.
Some examples of this are Google News’ grouping of multiple articles into a set of articles about the same topic,
taking genetic information about people and clustering them based on the expression of genes, organizing computer
clusters, social network analysis, market segmentation, and astronomical data analysis.

One really cool example mentioned and demonstrated in the lecture is the “cocktail party problem”, wherein we
have k speakers and k microphones, and we wish to separate out a track from each speaker. We can do this with one
line of code in MATLAB/Octave, which is sort of cheating because the outer call is svd which is a pretty complex
thing.



Ilya Nepomnyashchiy - Reading Notes - Coursera ML 3

Lecture 2: Linear regression of one variable

Back to the housing prices example, we want to fit e.g. a straight line. More formally: The data set has m samples,
xs are the input vectors, and ys are the output or “target” variables. Therefore, (x, y) is a single training example
and (x(i), y(i)) is a specific one (the ith). We take the training set and feed it into the learning algorithm, which gives
us a function h (which stands for hypothesis). We have h : size of the house → the estimated price, or h : x → y.

How do we represent h? In this case, we want to fit a straight line, so we will represent hθ(x) = θ0 + θ1x. Usually
we will write hθ(x) as h(x) as it will be clear from context. We are starting from linear regression because it is a
nice simple building block to start with. The full name of this is linear regression with one variable or univariate
linear regression.

Now, we must define a thing called the cost function. The θis are parameters of the model, but how do we choose
them? We want to choose them so that h(x) is close to the training examples, or more formally to satisfy the
following minimum:

min
θ

1

2m

m∑

i=1

(hθ(x
(i))− y(i))2

We will refer to the function as J(θ0, θ1), and call it our cost function. This particular cost function is called the
squared error cost function. We use it here because it works well for most problems, especially regression ones. (As
a side note, squared error is differentiable, wherease linear error is not, which becomes important later on).

The lectures go through several examples to help build intuition about the cost function. It’s a parabola, and it
has one global minimum.

Next, we describe the algorithm we will use. This algorithm is called gradient descent. The general outline is as
follows:

• Start with some θ0, θ1.

• Keep changing them to reduce J until we hopefully end up at a global minimum.

The way we will change the θ in this case is by repeating until convergence:

θj := θj − α
∂

∂θj
J(θ0, θ1)

for all j. (At this point, Professor Ng completely glosses over some basic multivariable calculus and this is where I
am sad). We must make sure to update the parameters simultaneously (thus, put the new values of the parameters
into temp variables until all the calculations are done), or else the algorithm we are doing is not exactly gradient
descent and has some wonky properties.

Notes on the learning rate: If α is too small, convergence will take forever. If α is too large, it may overshoot the
minimum or fail to converge. Also the gradient gets smaller near a local minimum, so there is no need to change
the learning rate over time. Finally, note that some cost functions may have local minima which are not global
minima, so gradient descent can land you in the wrong solution. It turns out that the J we defined above is a
convex function, so this does not happen.

This technique is also called “batch gradient descent”, because all training points are used on each step. It is also
possible to not batch, but we will discuss this later. Furthermore, we can use linear algebra to solve for linear
regression in particular without an iterative method. However, gradient descent scales better to larger datasets.
More extensions involve learning with larger number of features. We will talk about all of these methods later in
the class.

It turns out the best notation for much of machine learning comes from the language of linear algebra, which is
why lecture 3 is a review of linear algebra.



Ilya Nepomnyashchiy - Reading Notes - Coursera ML 4

Lecture 3: Linear algebra review

Didn’t watch this because I already know linear algebra and don’t have time :P

Lecture 4: Learning with multiple features

Let’s go back to our house prices example. Suppose that instead of just square feet of the house as our feature,
we had square feet, number of bedrooms, number of floors, and age of the house. We will use x1, x2, x3, and x4 to
denote these four features, and continue to use y to denote the target variables. As some further notation, we will

use n to be the number of features, x(i) to be the input features of the ith training example, and x
(
j i) to be the

value of feature j in the ith training example.

Now, instead of representing hθ(x) as θ0 + θ1x, we have hθ(~x) = θ0 + θ1x2 + θ2x2 + θ3x3 + θ4x4. In general,
hθ(~x) = θ0 + θ1x1 + . . . + θnxn. For convenience, we define x0 = 1 so that ~x ∈ R

n+1 and the parameters are a
vector θ ∈ R

n+1. We can write the general form of our hypothesis as hθ(~x) = θT ~x. I think for my own convenience
for typing this, I’ll drop the vector notation and input vectors will just be assumed to be vectors.

Next, we look at gradient descent on multiple variables. We have the same cost function, but now J depends on
all of the new θ parameters, which we think of as a vector. Thus:

θj = θj − α
∂

∂θj
J(θ)

is our new update rule, and we once again simultaneously update.

In practice, we want to do a couple of things to our data to make sure gradient descent works as well as it should.
The first thing is called feature scaling. The idea here is to make sure that the various features in the feature vector
are on the same scale, so that one of the features doesn’t dominate the gradient descent. For example, if x1 is your
house’s size, which goes on a scale of 0-2000 square feet, and x2 is your house’s number of bedrooms, which goes on
a scale of 1-5 bedrooms, then the contours will be stretched out in one direction and the descent will take a while
to converge (it will oscillate in one direction, similarly to when α is big).

The solution to this problem is to divide each feature by its max value and subtract a value such that each feature
is approximately in [−1, 1]. It’s okay if this isn’t the exact interval, as long as it’s on the same scale.

Another thing we might want to do to our data is called mean normalization. In this process, we try to make our
variables have approximately zero mean (obviously, this shouldn’t apply to x0 = 1). This can be done merely by
subtracting the mean. For example, in our house example, we might do x1 = size−1000

2000 .

For ”Gradient Descent in practice II”, Professor Ng discusses debugging and choosing the most effective learning
rate.

Debugging: A very useful thing to do when your learning process doesn’t seem to be working is to plot the cost
function over the number of iterations. The cost should be going down after every iteration. This curve will also
tell you the number of iterations after which the curve flattens out and you get diminishing returns (note that this
number depends on the application and can vary a great deal). Instead of looking at the graph, one can also come
up with automated convergence tests, e.g. stop when J(θ) decreases by less than a small value, say 10−3 in one
iteration. Professor Ng points out that he finds it hard to pick that small value and that looking at the plot is often
better.

More importantly, this curve can highlight problems in your learning method. If J(θ) is increasing, then α is too
big, and the descent is overshooting the minimum. If J is oscillating, it likely means the same. Although it isn’t
proven in the lecture, it is the case that if α is small enough, J(θ) should decrease on every iteration (assuming



Ilya Nepomnyashchiy - Reading Notes - Coursera ML 5

differentiable cost function!), but having too small of an α will cause the descent to take too long to converge. In
some cases, an α that is too big will cause slow convergence as well, but that’s uncommon.

Picking α:


	Lecture 1: What is ML?
	Lecture 2: Linear regression of one variable
	Lecture 3: Linear algebra review
	Lecture 4: Learning with multiple features

